Search results for " 35J05"

showing 8 items of 8 documents

Determining a Random Schrödinger Operator : Both Potential and Source are Random

2020

We study an inverse scattering problem associated with a Schr\"odinger system where both the potential and source terms are random and unknown. The well-posedness of the forward scattering problem is first established in a proper sense. We then derive two unique recovery results in determining the rough strengths of the random source and the random potential, by using the corresponding far-field data. The first recovery result shows that a single realization of the passive scattering measurements uniquely recovers the rough strength of the random source. The second one shows that, by a single realization of the backscattering data, the rough strength of the random potential can be recovered…

Complex systemMicrolocal analysis01 natural sciencesinversio-ongelmatsähkömagneettinen säteilysymbols.namesakeOperator (computer programming)Mathematics - Analysis of PDEs0103 physical sciencessironta0101 mathematicsMathematical PhysicsMathematics35Q60 35J05 31B10 35R30 78A40osittaisdifferentiaaliyhtälötScattering010102 general mathematicsMathematical analysisErgodicityStatistical and Nonlinear PhysicsInverse scattering problemsymbols010307 mathematical physicsmatemaattiset mallitRealization (probability)Schrödinger's cat
researchProduct

A RADIATION CONDITION FOR UNIQUENESS IN A WAVE PROPAGATION PROBLEM FOR 2-D OPEN WAVEGUIDES

2009

We study the uniqueness of solutions of Helmholtz equation for a problem that concerns wave propagation in waveguides. The classical radiation condition does not apply to our problem because the inhomogeneity of the index of refraction extends to infinity in one direction. Also, because of the presence of a waveguide, some waves propagate in one direction with different propagation constants and without decaying in amplitude. Our main result provides an explicit condition for uniqueness which takes into account the physically significant components, corresponding to guided and non-guided waves; this condition reduces to the classical Sommerfeld-Rellich condition in the relevant cases. Final…

Electromagnetic fieldAsymptotic analysisHelmholtz equationWave propagationGeneral Mathematicsmedia_common.quotation_subject78A40 35J05 78A50 35A05Mathematical analysisGeneral Engineeringelectromagnetic fields • wave propagation • Helmholtz equation • optical waveguides • uniqueness of solutions • radiation conditionInfinitylaw.inventionAmplitudeMathematics - Analysis of PDEslawFOS: Mathematicswave propagation; Helmholtz equation; optical waveguides; radiation condition; uniqueness theoremsUniquenessWaveguidemedia_commonMathematicsAnalysis of PDEs (math.AP)
researchProduct

Fixed angle inverse scattering for sound speeds close to constant

2021

We study the fixed angle inverse scattering problem of determining a sound speed from scattering measurements corresponding to a single incident wave. The main result shows that a sound speed close to constant can be stably determined by just one measurement. Our method is based on studying the linearized problem, which turns out to be related to the acoustic problem in photoacoustic imaging. We adapt the modified time-reversal method from [P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems 25 (2009), 075011] to solve the linearized problem in a stable way, and use this to give a local uniqueness result for the nonlinear inverse problem.

FOS: Mathematics35R30 35Q60 35J05 31B10 78A40Analysis of PDEs (math.AP)
researchProduct

Monotonicity and local uniqueness for the Helmholtz equation

2017

This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coefficient function $q$. We show a monotonicity relation between the scattering coefficient $q$ and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local…

Helmholtz equationMathematics::Number Theorylocalized potentialsBoundary (topology)Monotonic function01 natural sciencesDomain (mathematical analysis)inversio-ongelmat35R30 35J05symbols.namesakeMathematics - Analysis of PDEs35J050103 physical sciencesFOS: MathematicsUniquenessHelmholtz equation0101 mathematicsinverse coefficient problemsEigenvalues and eigenvectorsMathematicsNumerical AnalysisApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Spectral Theorymonotonicitystationary Schrödinger equation35R30Helmholtz free energyBounded functionsymbols010307 mathematical physicsmonotonicity localized potentialsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Landis-type conjecture for the half-Laplacian

2023

In this paper, we study the Landis-type conjecture, i.e., unique continuation property from infinity, of the fractional Schrödinger equation with drift and potential terms. We show that if any solution of the equation decays at a certain exponential rate, then it must be trivial. The main ingredients of our proof are the Caffarelli-Silvestre extension and Armitage’s Liouville-type theorem. peerReviewed

Landis conjecture half-Laplacian Caarelli- Silvestre extension Liouville-type theoremosittaisdifferentiaaliyhtälötMathematics - Analysis of PDEsApplied MathematicsGeneral Mathematicsunique continuation propertyPrimary: 35A02 35B40 35R11. Secondary: 35J05 35J15FOS: MathematicsAnalysis of PDEs (math.AP)
researchProduct

Fixed angle inverse scattering in the presence of a Riemannian metric

2020

We consider a fixed angle inverse scattering problem in the presence of a known Riemannian metric. First, assuming a no caustics condition, we study the direct problem by utilizing the progressing wave expansion. Under a symmetry assumption on the metric, we obtain uniqueness and stability results in the inverse scattering problem for a potential with data generated by two incident waves from opposite directions. Further, similar results are given using one measurement provided the potential also satisfies a symmetry assumption. This work extends the results of [23,24] from the Euclidean case to certain Riemannian metrics.

Mathematics - Differential GeometryWork (thermodynamics)01 natural sciencesinversio-ongelmatFixed angleMathematics - Analysis of PDEsIncident waveEuclidean geometryFOS: MathematicssirontaUniqueness0101 mathematicsinverse medium problemPhysicsosittaisdifferentiaaliyhtälöt35Q60 35J05 31B10 35R30 78A40Applied Mathematics010102 general mathematicsMathematical analysisCarleman estimatesRiemannian metricsSymmetry (physics)010101 applied mathematicsfixed angle scatteringDifferential Geometry (math.DG)Metric (mathematics)Inverse scattering problemAnalysis of PDEs (math.AP)
researchProduct

Solutions of elliptic equations with a level surface parallel to the boundary: stability of the radial configuration

2016

A positive solution of a homogeneous Dirichlet boundary value problem or initial-value problems for certain elliptic or parabolic equations must be radially symmetric and monotone in the radial direction if just one of its level surfaces is parallel to the boundary of the domain. Here, for the elliptic case, we prove the stability counterpart of that result. We show that if the solution is almost constant on a surface at a fixed distance from the boundary, then the domain is almost radially symmetric, in the sense that is contained in and contains two concentric balls $${B_{{r_e}}}$$ and $${B_{{r_i}}}$$ , with the difference r e -r i (linearly) controlled by a suitable norm of the deviation…

Partial differential equationParallel surfaces overdetermined problems method of moving planes stability stationary surfaces Harnack’s inequality.General Mathematics010102 general mathematicsMathematical analysisPrimary 35B06 35J05 35J61 Secondary 35B35 35B09Concentric01 natural sciencesParabolic partial differential equationDirichlet distributionparallel surfaces; overdetermined problems; method of moving planes; stability; stationary surfaces; Harnack's inequality010101 applied mathematicssymbols.namesakeMathematics - Analysis of PDEsMonotone polygonHomogeneousSettore MAT/05 - Analisi MatematicaNorm (mathematics)FOS: MathematicssymbolsBoundary value problem0101 mathematicsAnalysisAnalysis of PDEs (math.AP)Mathematics
researchProduct

Multi-parameter analysis of the obstacle scattering problem

2022

Abstract We consider the acoustic field scattered by a bounded impenetrable obstacle and we study its dependence upon a certain set of parameters. As usual, the problem is modeled by an exterior Dirichlet problem for the Helmholtz equation Δu + k 2 u = 0. We show that the solution u and its far field pattern u ∞ depend real analytically on the shape of the obstacle, the wave number k, and the Dirichlet datum. We also prove a similar result for the corresponding Dirichlet-to-Neumann map.

integral equationsshape sensitivity analysisassociated exterior Dirichlet problemDirichlet-to-Neumann operatorApplied MathematicsHelmholtz equation; acoustic scattering; associated exterior Dirichlet problem; Dirichlet-to-Neumann operator; shape sensitivity analysis; perturbed domain; integral equationsacoustic scatteringComputer Science ApplicationsTheoretical Computer Scienceperturbed domainMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaSignal ProcessingFOS: Mathematicsacoustic scattering; associated exterior Dirichlet problem; Dirichlet-to-Neumann operator; Helmholtz equation; integral equations; perturbed domain; shape sensitivity analysisHelmholtz equation35J25 35J05 35P25 31B10 45A05Mathematical PhysicsAnalysis of PDEs (math.AP)
researchProduct